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Abstract

To examine how the brain produces behavior, new statistical methods have
linked neurophysiological measures directly to mechanisms of cognitive mod-
els, modeling both modalities simultaneously. However, current simultane-
ous modeling efforts are largely based on either correlational methods or on
functions that map one stream of data to the other. Such frameworks are
limited in their ability to infer causality between brain activity and behavior,
typically ignore important temporal dynamics of neural measures, or ignore
large and small scale functional networks necessary for completing cogni-
tive tasks. In this article, we investigate one causal framework for modeling
brain dynamics as a potential alternative for explaining how behavior can be
viewed as an emergent property of brain dynamics. Our proposed framework
can be considered an extension of Multivariate Dynamical Systems (MDS;
Ryali et al., 2011), as it is constructed in a way such that the temporal
dynamics and brain functional connectivities are explicitly contained in the
model structures. To test the potential usefulness of the MDS framework,
we formulate a concrete model within it, demonstrate that it generates rea-
sonable predictions about both behavioral and fMRI data, and conduct a
parameter recovery study. Specifically, we develop a generative model of
perceptual decision making in a visual motion direction discrimination task.
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Two simulation studies under different experimental protocols illustrate that
the MDS model can capture key characteristics of both behavioral and neu-
ral measures that typically occur in experimental data. We also examine
whether or not such a complex system can be inferred from experimental
data by evaluating whether current algorithms for fitting models to data can
recover sensible parameter estimates. Our parameter recovery study suggests
that the MDS parameters can be recovered using likelihood-free estimation
techniques. Together, these results suggest that our MDS-based framework
shows great promise for developing fully integrative models of brain-behavior
relationships.

Keywords: Joint modeling, Dynamical systems, Bayesian inference,
Perceptual decision making
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1. Introduction1

The rapid development of brain measurement techniques such as func-2

tional magnetic resonance imaging (fMRI) have contributed substantial in-3

sights into the neural correlates of human information processing and cogni-4

tive operations in cognitive neuroscience. Traditional cognitive neuroscience5

has investigated relations between brain and behavior in two directions. The6

first direction is on interpreting and understanding the unique contribution7

of individual brain areas, known as localization. The central premise is8

that different brain areas are different because they perform different opera-9

tions. For example, certain brain regions (e.g. V5 or middle temporal (MT))10

are thought to play major roles in processing visual motion (Maunsell and11

Van Essen, 1983; Vanduffel et al., 2001), in that the neurons in these regions12

significantly predict decisions about motion direction (Gold and Shadlen,13

2007). The second direction is to identify brain networks that jointly de-14

scribe cognitive operations, where the premise is that the completion of any15

cognitive function requires the collaboration of a series of functionally segre-16

gated brain functions. For example, in the case of visual motion processing,17

the completion of the function also relies on some basic cortical or subcorti-18

cal functions such as the basal ganglia to either inhibit the motion impulse19

or execute a motor command (Hikosaka et al., 2000a; Lo and Wang, 2006).20

Both directions contribute to our understanding of how individual brain re-21

gions work together within a functional network to produce behavior, and22

what the functional roles of those individual brain regions are within the23

context of a task. However, most analyses in cognitive neuroscience consider24

the questions of “what is the functional role of brain region X?” and “what is25

the brain network that gives rise to cognitive operation Y?” as two separate26

issues, often requiring completely different statistical techniques. Segregating27

these two objectives can potentially obfuscate the functional interpretation28

of brain region X, specifically what its contribution to cognitive operation Y29

actually is.30

To better understand and interpret brain function, a new wave of re-31

searchers have abstracted away the cognitive operations necessary for per-32

forming cognitive tasks, and examined how these abstractions are related to33

brain activity (see Forstmann and Wagenmakers, 2015; Turner et al., 2017b,34

2019a,b; de Hollander et al., 2016, for reviews). These efforts are based on a35

set of linking propositions (Teller, 1984; Schall, 2003) relating psychological36

variables to physiological ones, where various approaches can be uniquely37
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separated on the basis of how researchers impose said link (de Hollander38

et al., 2016; Turner et al., 2017b). Although a detailed review is beyond the39

purpose of this article, Fig. 1 shows a few particularly relevant diagrams that40

illustrate different linking concepts within an overarching “joint modeling”41

framework (Turner et al., 2013b, 2015b; Palestro et al., 2018a; Turner et al.,42

2019a). The directed approach (left) attempts to simply transform the neural43

data N into a parameter θ within a cognitive model, and the transformation44

may have parameters δ. The success of this linking procedure is the degree45

to which a suitable transformation of the neural data provides good predic-46

tions for, or fits to, behavioral data B. The covariance approach (middle)47

attempts to impose a flexible map from neural data to model parameters by48

considering all possible pairwise correlations between sets of candidate brain49

regions and mechanisms in the model. It assumes an overarching distribution50

that enforces an explicit connection between parameters θ, δ, and Ω, where51

δ and θ have a direct constraint on neural N and behavioral B data, respec-52

tively. Although new efforts have increased the scalability of this approach53

(Turner et al., 2017a), there are clear limitations with considering all possible54

pairwise correlations.55

The two approaches – directed and covariance – each attempt to address56

both the functional role of brain regions and the overarching functional net-57

work among brain regions. The directed approach instantiates an explicit link58

between neural data from one brain region and a model parameter. Once fit59

to data, one can then assess the degree to which a significant mapping rela-60

tion exists by, for example, examining the posterior distribution of the slope61

parameter within a regression model linking N to θ. Although an informed62

multivariate regression model is a possible solution, directed models are not63

typically made cognizant of the many interactions that may exist between64

different brain regions, and hence are typically not suitable for uncovering65

brain networks. On the other hand, the covariance approach was intended66

to extract brain networks by considering the set of brain regions that (1) are67

correlated with one another, and (2) are jointly correlated with a cognitive68

mechanism. Despite the promise of network extraction, covariance models69

are still limited in the sense that they are typically correlational in nature.70

The linking function most commonly prescribed is a multivariate normal dis-71

tribution (e.g., Turner et al., 2015b, 2016), such that the connections among72

modalities are defined by a covariance matrix. Directed models impose a73

more causal, confirmatory structure (Cassey et al., 2016; van Ravenzwaaij74

et al., 2017) but are also tied to specific details of cognitive models that may75
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Figure 1: An illustration of three approaches for linking neural and behavioral
data simultaneously. N represents the neural data, B represents the behavioral data,
and S represents experimental stimuli. θ, δ, and Ω represent model parameters. Solid
lines with arrows indicate ancestry statistical dependence among the nodes in the graph.

limit their flexibility.76

In this article, we explore a different approach that we refer to as the77

“integrative” approach shown in the right panel of Fig. 1. The integrative78

approach develops a single cognitive model capable of predicting both neural79

and behavioral measures from experimental stimuli S. Here, a single set of80

parameters θ transforms the experimental stimuli through a model specifica-81

tion to generate predictions about neural N and behavioral B data jointly.82

Integrative models have been previously developed and productively used.83

For example, Anderson and colleagues (Anderson, 2007; Anderson et al.,84

2008; Borst and Anderson, 2013; Borst et al., 2010a,b) have shown that by85

using the ACT-R architecture to specify the model structure (i.e., θ in Fig.86

1), fMRI data can be predicted by convolving modular activation within87

ACT-R with the canonical hemodynamic response function. Because ACT-88

R was already designed to explain behavioral data, the internal dynamics of89

ACT-R give a natural mechanism for also producing predictions for neural90

data. The integrative approach is also related to the work of Cassey et al.91

(2016), Kragel et al. (2015), Polyn et al. (2005), and Purcell et al. (2010),92

where neural data are modeled and directly drive or replace components of93

a cognitive model.94
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Although conceptually simple in Fig. 1, the success of an integrative95

model is determined by how the model structure in θ is specified. Our goal96

in this article is to create a framework for designing integrative models, by (1)97

identifying key brain regions that jointly contribute to the cognitive processes98

in the task, (2) defining structure among those brain regions that respects the99

temporal and spatial properties of brain regions having a physical existence100

within space and time, and (3) specifying how activity in a subset of brain101

regions promotes a specific behavioral response. Our framework considers102

the distributed interactions among brain regions by conceptualizing them as103

being temporally and spatially dependent, yet functionally integrated (Fris-104

ton, 2009). To provide constraint on integrative models, we articulate our105

framework by requiring full specification of the time series for each region of106

interest (ROI). The time series of each ROI will be a dependent function of107

all brain regions in the set, which will allow us to investigate both localiza-108

tion behavior and functional connectivity among ROIs, potentially providing109

an integrated solution to understanding the functional role of ROIs within a110

network.111

By virtue of their specificity, integrative models, with the form shown112

in Fig. 1, are difficult to develop and fit to data. Not only must integra-113

tive models consider how brain regions interact with one another, they must114

also consider how those regions ultimately give rise to a prediction about115

behavior. Often, researchers can rely on previous localization work to define116

how brain regions contribute to the cognitive process, but this is no small117

task, especially considering the emergence of brain networks with common118

functional structure discussed above. Also, there are methodological difficul-119

ties in fitting integrative models to data because they have a larger number120

of parameters and they often are mathematically intractable due to their121

inherently stochastic and time-dependent nature.122

We propose a new integrative framework for mapping functional brain123

activity to decision making processes, based on Multivariate Dynamical Sys-124

tems (MDS; Ryali et al., 2011). Our framework is designed to simulta-125

neously generate behavioral data and neural measures for cognitive tasks.126

In constructing this framework, we have three criteria in mind. First, our127

framework should construct fully generative models for neuro-cognitive pro-128

cesses. Generative models predict the pattern of neural and behavioral data129

a priori based on assumptions of underlying cognitive processes and stimulus130

properties. Second, our framework should explain neural measures from a131

functionally integrated brain network, such that the coordination contributes132
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to the eventual cognitive process. Third, we wish to specify the generative133

process for neural data in an abstract, measure-independent space such that134

integrative models are invariant with respect to the type of neural measures135

collected experimentally (e.g., fMRI, EEG). Imposing these constraints here136

will facilitate future work enabling data fusion, where a single cognitive model137

can be used to explain behavior, EEG, and fMRI (e.g., Turner et al., 2016).138

In this article, we use our framework to construct a specific cognitive139

model for the perceptual decision making task. We present two simulation140

results showing that the extended MDS models can generate plausible pat-141

terns of both behavioral and neural data. We then investigate whether or142

not such a framework can be realized from neural and behavioral data from a143

cognitive task. To investigate this, we apply approximate Bayesian methods144

to estimate model parameters of the model by fitting it to simulated data.145

Finally, contributions and limitations of the extended MDS are discussed.146

2. Multivariate Dynamical Systems147

The proposed MDS framework is closely related to but also distinct from148

certain other frameworks. On the one hand, MDS can be viewed as a mul-149

tivariate version of the linear dynamical systems. For example, bilinear dy-150

namical systems model a single neuron activation (Penny et al., 2005), and151

switching linear dynamic systems are proposed to improve the overall qual-152

ity and sufficiency of model parameter estimation (Smith et al., 2010). On153

the other hand, MDS has many commonalities with dynamic causal model-154

ing (DCM; Friston et al., 2003, Friston et al., 2017, Marreiros et al., 2008,155

Stephan et al., 2010) in that they both contain a “state equation” to model156

the latent neuronal activations, and an “observation equation” to map the157

latent neuronal activation to the observed neural signals, such as fMRI blood158

oxygen level dependent (BOLD) signals. However, there are many differences159

between MDS and DCM. First, conventional DCM treats the brain as a de-160

terministic dynamic system subject to inputs (Friston et al., 2003) although a161

stochastic DCM was developed later (Daunizeau et al., 2009), whereas MDS162

explicitly includes a stochastic term. Second, DCM and MDS use different163

observation equations to map the latent neuronal activation to the BOLD sig-164

nal. In particular, DCM adopts a nonlinear “Balloon” model (Buxton et al.,165

1998; Friston et al., 2000; Mandeville et al., 1999; Stephan et al., 2007) to166

describe how latent neuronal activations are transformed into hemodynamic167

time-series, while MDS formulates the relationship as a linear convolution of168
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Figure 2: An illustration of the MDS state equation for a model with 6 ROIs.
S(t) and S(t− 1) are two column vectors denoting the neuronal activations at time point
t and t − 1, respectively. C(t) is a endogenous brain connectivity matrix at time t. D is
a diagonal matrix with direct exogenous effects indicated by diagonal entries. U(t) is the
strength of input. ω(t) denotes the noise vector.

latent neuronal states with a kernel expansion using basis functions (Ryali169

et al., 2011). Another DCM study related to the goal of the current article is170

the behavioral DCM (Daunizeau et al., 2014; Rigoux and Daunizeau, 2015).171

The central idea of the behavioral DCM is that the hidden neuronal states172

can be transformed by a probabilistic sigmoid mapping to produce a binary173

behavioral choice. Our extended MDS model can produce both behavioral174

choice and response time, under a mechanistic model.175

In general, MDS is a state-space model in that it models observed data by176

assuming a time series of unobserved data. MDS first captures unobserved177

states by specifying a state equation, and then maps the unobserved states178

to observed data by specifying an observation equation. Here we consider179

neural measures as observed data and consider neuronal activations in the180

brain ROIs as the latent states. An important point that will be exemplified181

in future studies is that while neural measures are directly dependent on182

the measurement tools (e.g. fMRI BOLD signals, EEG signals), the latent183

neuronal activations in this framework are invariant to the measurement184

tools. Hence, once the latent activations are specified in a given system, any185

number of neural measures may be used to infer the parameters of the model186

from data.187

2.1. State Equation188

For M brain ROIs, we denote ROI i as Ri (i = 1, . . . , M). S(t) represents189

neuronal activations at time t in each of M ROIs and it is a column vector190
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of length M . The MDS state equation191

S(t) = C(t)S(t− 1) +DU(t) + ω(t), for t = 1, . . . , T, (1)

involves a sum of three terms that are illustrated in Fig. 2 for a model with 6192

ROIs. First, C(t) is an M ×M matrix showing the strengths of endogenous193

brain connectivity at time point t. The diagonal elements in C(t) indicate194

the self-connection within each ROI, and non-diagonal elements indicate in-195

terconnection paths between ROIs. For example, C[3, 1] denotes the connec-196

tivity strength from R1 to R3, and this connectivity could differ from C[1, 3],197

the connectivity strength from R3 to R1. Notice that C(t) is often assumed198

to be time-invariant in dynamical systems, but here we allow this matrix to199

vary across time to accommodate the specifications of our cognitive model.200

Second, the term DU(t) in Eq. 1 indicates the direct exogenous effect201

on S(t). The vector U(t) has M components, each of which indicates the202

strength of external inputs to the corresponding ROI at time t. The strength203

values are mainly affected by the experimental stimuli property. U(t) can be204

constant across time T but can also vary to represent temporal fluctuations205

of the perceived strength values. D is an M ×M diagonal matrix and D(i, i)206

weights the external inputs. By specifying a diagonal matrix, each external207

stimulus is constrained to affect exactly one ROI.208

Third, the noise term ω(t) is a vector of length M sampled from a mul-209

tivariate normal distribution with ω(t) ∼ NM(0, Q(t)). This most general210

form of the variance-covariance matrix Q(t) indicates that noise can vary211

across time and may be correlated across different ROIs. If one assumes in-212

dependent and identically distributed noise across both time and ROIs, then213

Q(t) can be simplified to σ2IM , where IM is an identity matrix of size M214

(Ryali et al., 2011). Q(t) is essentially useful as a way to manipulate the215

signal-to-noise ratio (Ryali et al., 2011), and thus in our framework, Q(t)216

systematically affects choice accuracy and response times. For the simula-217

tion in this article, Q(t) can vary across time in order to accommodate the218

specifications of our cognitive model.219

2.2. Observation Equation220

We choose fMRI BOLD signal as the neural measure for the purposes221

of this article. In MDS, the BOLD signal in each ROI is modeled as a222

linear convolution of the hemodynamic response function (HRF) and latent223

neuronal activations in each ROI with appropriate observation noise (Ryali224
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et al., 2011). The latent neuronal activation in Rm at time t comes from the225

m-th element of S(t) and is denoted as Sm(t). The observed BOLD signal226

at time t in Rm is denoted as Ym(t). If we use hm(τ) to denote the impulse227

response, or the HRF for Rm, the observation equation can be expressed as228

Ym(t) = Sm(t)⊗ hm(τ) + em(t)

=

∫ ∞
−∞

Sm(t− τ)hm(τ)dτ + em(t).
(2)

where “⊗” denotes linear convolution, and em(t) is the observation noise. The229

subscript m in each component allows regional variability. Here, we assume230

that hm(τ) takes the canonical form of the double gamma model implemented231

in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/):232

hm(τ) = Am

[
τα1−1βα1

1 e−β1τ

Γ(α1)
− cτ

α2−1βα2
2 e−β2τ

Γ(α2)

]
, for m = 1, . . . ,M, (3)

where τ references time and Γ(x) = (x− 1)! indicates the Gamma function,233

which acts as a normalization term. By convention, we set α1 = 6, α2 = 16, β1234

= β2 = 1 and c = 1/6 to represent the shape of HRF. The unknown parameter235

in the HRF is the amplitude Am, dependent on ROI Rm. The other unknown236

aspect of Equation 3 is the length of the HRF (denoted as L, in seconds). We237

choose to produce neuronal activations Sm(t) on the millisecond level, and so238

we set τ = {.001, .002, . . . , 1, . . . , L} to form a discrete (Euler) approximation239

of Eq. 3.240

We assume that the observation noise em(t) is normally distributed with241

zero mean and variance ξ2m:242

em(t) ∼ N(0, ξ2m).

Note that the noise term em(t) is uncorrelated across time points, and each243

ROI can have its own variance.244

To control for computational burden in our applications below, Ym(t) is245

downsampled by a factor of 1,000 for each of m = 1, . . . , 6. Specifically, we246

keep every 1,000th sample of Ym(t) and discard the others, a process that247

can be written as248

BOLDm(j) = Ym(1000j),

where the index j is counted in seconds when applied to BOLDm and in249

milliseconds when applied to Ym. We perform this step to conform to the250

temporal resolution of fMRI BOLD signal in a real experiment, which de-251

pends on the repetition time (TR). We assume TR = 1s.252
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3. Model structure253

Here, we apply the MDS framework to construct a generative model of254

perceptual decision making. In particular, we apply the MDS framework on255

a sequence of (assumed) experimental trials. The latent neuronal activation256

determines both BOLD signal (via the observation equation in Eq. 2) and257

behavioral data. The trials are consecutive so that neuronal activation in the258

current trial affects the following trial. The model is intended to describe how259

key ROIs systematically activate through time across experimental trials.260

We first review some important findings about the neural substrate of261

perceptual decision making, because they provide the theoretical underpin-262

nings of the model. Next, we construct a basis set of ROIs based on the263

literature, and then define the mathematical structure that relates the neu-264

ronal activation among the regions through time. As a reference, Fig. 3265

shows the overarching structure of the model, where we assume a set of six266

ROIs (R1, . . . , R6). By specifying a particular structural relationship be-267

tween these regions, we can simulate the model’s activity in the context of a268

random dot motion task.269

The random dot motion task is often used to investigate the neural and270

cognitive basis of perceptual decision making (Ball and Sekuler, 1982; Brit-271

ten et al., 1992; Churchland et al., 2008; Forstmann et al., 2010, 2008; Ho272

et al., 2009; Niwa and Ditterich, 2008; Roitman and Shadlen, 2002; Salzman273

and Newsome, 1994; Shadlen and Newsome, 2001; van Maanen et al., 2011).274

The stimuli in this task consist of an array of moving dots, where some per-275

centage of the dots are moving in a coherent direction. The percentage of276

dots moving coherently can be varied, and this percentage is often treated as277

an independent variable to quantify the task difficulty (e.g., Britten et al.,278

1992).279

The gist of how the brain processes information in the task can be de-280

scribed in three steps. First, sensory visual neurons in the brain areas MT and281

medial superior temporal (MST) of extrastriate cortex extract motion infor-282

mation from the visual image and represent the information within the visual283

cortex (Britten et al., 1992, 1996; Celebrini and Newsome, 1995; Croner and284

Albright, 1999; Shadlen et al., 1996). Neurons in MT and MST respond selec-285

tively to visual stimuli moving in particular directions reflecting the amount286

of motion energy to which they are tuned (Albright, 1984; Simoncelli and287

Heeger, 1998; Zeki, 1974). Second, the motion-direction representations in288

MT and MST are used to produce an integrated estimate of the net direction289
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of motion. There is evidence that the latter computation may be carried out290

in the frontal eye field (FEF) and the lateral intraparietal area (LIP) of the291

inferior parietal lobe (Andersen et al., 1992; Colby and Goldberg, 1999; Schall292

et al., 1995; Shadlen and Newsome, 2001). In particular, movement neurons293

in FEF and LIP initiate a saccade when their spike rate reaches a threshold294

(Brown et al., 2008; Dorris et al., 1997; Ratcliff et al., 2003, 2007). The295

cumulative strength of the motion information through time is often taken296

as evidence of accumulator dynamics in extant decision making models that297

assume sequential sampling of motion information (Boucher et al., 2007; Car-298

penter, 1999; Carpenter et al., 2009; Carpenter and Williams, 1995; Gold and299

Shadlen, 2007; Purcell et al., 2010; Ratcliff et al., 2003, 2007; Shadlen and300

Newsome, 2001).301

The first and second steps only indicate the probability of making a de-302

cision choice to a certain direction for a given visual input, but the overt303

response relies on the ability of downstream neurons to select one unambigu-304

ous motor program and pass it on to the motor system for execution (Gold305

and Shadlen, 2001, 2002). This selection is thought to be performed by the306

superior colliculus (SC) and basal ganglia in the third step (Ding and Gold,307

2013; Lo and Wang, 2006; Redgrave et al., 1999). The basal ganglia are308

known to have a critical role in voluntary motor behavior in general (Gray-309

biel, 1995; Hikosaka et al., 2000b; Houk et al., 1995; Wickens, 1997). Neurons310

in substantia nigra pars reticulata (SNr), an output structure of the basal311

ganglia, send GABAergic projections to principal cells in the SC, providing a312

“default” level of tonic inhibition to the SC. This tonic inhibition is released313

when the SNr receives increased inhibitory inputs from caudate nucleus (CD,314

part of the striatum), which is driven by excitatory inputs from many cortical315

areas including the LIP and FEF (Hikosaka et al., 2000b, 2006). The third316

step of how LIP and FEF affect SC through the mediation of the basal gan-317

glia is explained as a trade-off mechanism in the striatal hypothesis (Bogacz318

et al., 2010; Forstmann et al., 2008, 2010). The striatal hypothesis posits319

that an emphasis on speed promotes excitatory input from cortex to stria-320

tum; the increased baseline activation of the striatum acts to decrease the321

inhibitory control that the output nuclei of the basal ganglia exert over the322

brain, thereby facilitating faster but possibly premature responses.323

Inspired by the aforementioned neural findings, in Fig. 3, R1 and R2324

include visual neuronal populations mostly including MT and MST that se-325

lectively encode the motion information of the stimulus (Britten et al., 1992,326

1996; Celebrini and Newsome, 1995; Croner and Albright, 1999; Shadlen327
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Figure 3: A proposed MDS model for explaining neural and behavioral data
from a perceptual decision making task. UL and UR represent the visual inputs for
leftward and rightward moving dots, respectively. R1 and R2 contain visual cortex neurons
with direction-selective property. R1 and R2 encode visual inputs of random moving dots.
R3 and R4, such as FEF and LIP, contain neurons that accumulate evidence for leftward
and rightward dots independently. R5 stands for the output nuclei of basal ganglia and
R6 represents pre SMA. U5 provides a hypothetical constant input for R5. Black arrows
indicate input/output connections, red arrows indicate excitatory connections, and purple
arrows indicate inhibitory connections. R1 excites R3, R2 excites R4, and R5 inhibits
R6. When absolute difference of accumulated evidences between R3 and R4 reaches a
threshold, R3 and R4 jointly inhibit R5 so that R6 gets disinhibited. R6 accumulates
evidence for the response options, eventually passing a signal to initiate a movement. The
dotted lines represent a process of comparing values of S3(t0) and S4(t0) to determine the
movement direction.
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et al., 1996). The neuronal populations in R1 are mainly sensitive to the328

leftward motion, whereas those in R2 are mainly sensitive to the rightward329

motion. The direction-selective voxels in R1 and R2 can be decoded us-330

ing multivoxel pattern analysis (MVPA) methods and fMRI (Kamitani and331

Tong, 2005, 2006; Serences and Boynton, 2007a,b). UL and UR in Fig. 3 are332

the leftward moving and rightward moving stimulus strengths for the nodes333

R1 and R2, respectively.334

R3 and R4 contain neuronal populations of FEF and LIP that further pro-335

cess the visual information from R1 and R2 to guide the responses. Hence,336

the neuronal activations in R1 and R2 induce the neuronal activations in R3337

and R4 respectively, through their endogenous connectivity, and this induc-338

tion is illustrated as red arrows in Fig. 3 to represent excitatory effects. Here339

we conceptualize the instantaneous neuronal activations in R3 and R4 as two340

independent decision variables evolving at each time point, which makes R3341

and R4 function as two independent accumulators. This independent ac-342

cumulator assumption has been used in many perceptual decision-making343

models (Boucher et al., 2007; Carpenter, 1999; Carpenter et al., 2009; Car-344

penter and Williams, 1995; Gold and Shadlen, 2007; Kim and Shadlen, 1999;345

Purcell et al., 2010; Ratcliff et al., 2003, 2007; Schall, 2003; Shadlen and346

Newsome, 2001).347

Moving rightward along the diagram in Fig. 3, R5 is assumed to be the348

output nuclei of basal ganglia and R6 is assumed to be the presupplementary349

motor area (pre SMA). The neuronal activation in R5 continuously sends350

tonic inhibition to R6, preventing R6 from making a response, and this tonic351

inhibition is illustrated as a purple arrow from R5 to R6 in Fig. 3. U5352

provides a hypothetical constant impulse input for R5 so that when there353

is no other brain region connected with R5 and R6, R5 remains positively354

activated and thus R6 remains inhibited. Although there are many other355

regions (e.g. SC, striatum) that play an important role in decision making,356

we have omitted these areas from the MDS model for simplicity and their357

activities are unlikely to be clearly measured in real experimental data.358

R3 and R4 are conditionally connected with R5 through a dynamic gating359

mechanism. The dynamic gating mechanism has been widely adopted to360

explain how interactions between basal ganglia and cortical regions affect361

information updating inside the cortical regions (O’Reilly, 2006; Redgrave362

et al., 1999; Stewart et al., 2010). Following the notation of MDS, we express363

E(t) as364
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E(t) =| S3(t)− S4(t) |,

where S3(t) and S4(t) indicate the neuronal activation in R3 and R4 at365

time point t, respectively. Whenever E(t) reaches a pre-specified threshold366

value θ1, the connections from R3 and R4 to R5 are initiated, illustrated as367

purple arrows fromR3 andR4 toR5 to represent inhibitory effects. We denote368

the time at which the threshold is reached as t0. The relative values of S3(t)369

and S4(t) determine the response: a leftward choice is made if S3(t0) > S4(t0),370

and a rightward choice is made otherwise. The values of S3(t) and S4(t) are371

each depicted by a Gaussian distribution in Fig. 3, where in this illustration372

rightward motion (UR) is stronger than leftward motion (UL) on average. The373

joint inhibition from R3 and R4 makes R5 unable to inhibit R6 (Bogacz et al.,374

2010; Forstmann et al., 2008, 2010; Hikosaka et al., 2000b, 2006). Notice375

that the involvement of dynamic gating mechanism changes the connectivity376

matrix after t0. This is the main reason why C(t) in Eq. 1 is time-variant.377

Once R6 becomes disinhibited, the neuronal activation in R6 is moni-378

tored and accumulated at each moment from t0. As soon as it reaches a379

pre-specified threshold θ2, R6 sends out a signal to the muscle to initiate a380

movement, denoted as t1 (Forstmann et al., 2008; Georgiev et al., 2016; Mans-381

field et al., 2011). The response to be made is determined by the relative382

magnitude of neuronal activations in R3 and R4 at t0. As modeling motor383

control is beyond our present scope, we assume a constant delay parameter384

τ to execute the movement. This parameter is often used to model non-385

decision processes in other decision making models (Brown and Heathcote,386

2005, 2008; Ratcliff and Smith, 2004; Smith and Vickers, 1988).387

Following a response, the visual inputs from external stimuli are switched388

off (i.e. the values of UL and UR return to zero). As a result, the mean acti-389

vations of R1, R2, R3 and R4 return to zero, but fluctuate around this mean390

due to the noise term in Eq. 1. The variation of the noise term in R1 and391

R2 decreases after making a response to represent the lower noise variations392

of neuronal activations in visual processing ROIs after the response being393

made. Meanwhile, the joint inhibition from R3 and R4 to R5 is cancelled.394

R5 becomes disinhibited and R6 reverts back to being inhibited. The system395

remains at this stasis point until another stimulus is presented.396

Fig. 4 illustrates an example of how this model works by showing a trial397

of latent brain activity evolution of the six ROIs in Fig. 3. The three panels398
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show how neuronal activations (y-axis) evolve with time (x-axis) in the six399

ROIs (R1 to R6). ROIs are colored corresponding to the nodes in Fig. 3.400

UR is set to be 4 times larger than UL. By observing the neuronal activation401

oscillations of R1 and R2 in the top panel before t1, there is a clear pattern402

that the magnitude of activation within R2 is higher than that of R1. The403

opposite pattern (i.e., R1 is higher than R2) mainly arises from the large noise404

term. We use the same connectivity coefficient from R1 to R3 and from R2405

to R4. As such, in the middle panel, most of the time R4 lies above R3 before406

time point t1, similar to the pattern in the top panel where R2 lies above R1.407

The bottom panel shows the effect on R6 of the tonic inhibition from R5 for408

the time points before t0. Here, the activations of R5 and R6 are interwoven409

with each other whereas R5 looks more stable. The bottom panel within the410

time window from t0 to t1 illustrates a different pattern of activations between411

the R5 and R6 nodes. While R6 rises rapidly and remains highly activated,412

R5 remains negatively activated. The rightmost portion of the graph after413

the movement-initiation time t1 illustrates the neuronal activations in the414

six ROIs after making the response. The activations of R1, R2, R3 and R4415

fluctuate around zero means. R5 becomes disinhibited and R6 is inhibited at416

the negative value.417

The MDS model we have developed can be used to generate predictions418

about neural and behavioral data through simulations. Although the model419

has several components and temporally-specific changes to its parameters,420

Appendix A provides pseudocode with explicit steps detailing these changes421

to facilitate the model’s implementation. As a test of the model’s appro-422

priateness, in the following sections, we simulate the model under different423

stimulus configurations, and evaluate whether the model generates patterns424

of data that are reasonable. In Simulation Study 1, the stimulus strength425

(coherence) favored either one or the other response on most trials, which426

is a typical experimental procedure. In Simulation Study 2, the two kinds427

of visual motion were balanced on all trials while their (common) absolute428

coherence was manipulated. While such balanced coherencies for the two429

options should not present a problem in principle, this particular stimulus430

configuration presents an interesting challenge to many extant models of de-431

cision making (Ratcliff et al., 2018; Teodorescu and Usher, 2013; Teodorescu432

et al., 2016).433
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4. Simulation Study 1: Unequal coherence434

The first simulation involves a standard set of stimuli, where coherence435

is varied along a single dimension, varying in strength for leftward and right-436

ward response options. For the purposes of our simulation, we assumed 1,000437

dots shown on the screen, with each one moving either leftward or rightward.438

Then the leftward dots and rightward dots can be subtracted from each other439

to form a net coherence. For example, if there are 30% leftward dots and440

70% rightward dots, then the net coherence level is 40% to the right. The441

probability of leftward dots is defined as pL and it is the independent variable442

in this simulated experiment. Table 1 shows that pL varies from .1 to .9, in-443

creasing by .1, implying that the probability of rightward dots pR decreases444

from .9 to .1 by .1. The net coherence equals to the absolute difference of pL445

and pR, with the direction determined by the larger one of pL and pR.446

pL .1 .2 .3 .4 .5 .6 .7 .8 .9

pR .9 .8 .7 .6 .5 .4 .3 .2 .1

Net coherence .8 .6 .4 .2 0 .2 .4 .6 .8

Table 1: The pL condition levels, corresponding pR levels and net coherence levels used in
Simulation Study 1. pL: probability of leftward moving dots. pR: probability of rightward
moving dots. The net coherence is the absolute difference of pL and pR, with the direction
determined by the larger one of pL and pR.

With pL and pR at hand, we can calculate the number of leftward dots447

and rightward dots and use them to represent the strengths of the visual448

stimuli. In the simulation, we use the number of dots as strength of input of449

UL and UR. For each time point t from stimulus onset to movement-initiation450

time t1, the number of leftward moving dots (UL) is randomly sampled from451

a Binomial distribution with a given probability parameter pL:452

UL(t) ∼ Binomial(1000, pL), t = 1, . . . , t1

and the number of rightward moving dots (UR) equals to UL subtracted from453

1,000:454

UR(t) = 1000− UL(t), t = 1, . . . , t1.

Hence, as UL is sampled at each moment in time, the stimulus is stochastic,455

and the strength of evidence fluctuates through time. The sum of UL(t) and456
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UR(t) is always a fixed 1,000. Following a response (i.e. t > t1), UL(t) and457

UR(t) are set to zero.458

UL(t) and UR(t) are used as first two elements in the external input vector459

U(t) in Eq. 1, making UL and UR the impulse functions for R1 and R2,460

respectively. The values of UL(t) and UR(t) are both divided by 100 to scale461

the strength of neuronal activation. U5 is fixed to be 1 and passed to the462

fifth element in the vector U(t), implying a hypothetical constant magnitude463

of impulse function for R5.464

We simulated a series of 270 trials where each trial is associated with465

a pL condition. We assumed 30 trials for each pL condition, and different466

pL conditions are randomly interleaved across trials. Hence, this simulated467

experiment can be considered as an event-related design. Each series with 270468

trials can be simulated multiple times to take into account the randomness469

in a simulated experiment. We simulated the series of trials for 100 times in470

order to observe the data pattern, and the randomization of trial conditions471

is fixed during the replication.472

4.1. Parameters473

The state equation (Eq. 1) and observation equation (Eq. 2) in MDS474

and perceptual decision making model structure in Section 3 involve many475

parameters. In this section, we describe how we specified those parameters476

for the current simulation. We adopt two different forms for the intrinsic477

connectivity matrix C(t) according to the model structure in Section 3, hence478

the time-dependent specification of the C matrix stated earlier. Specifically,479

we let C(t) = C1 from the beginning of a trial until the threshold-crossing480

time (t < t0) and then again from the motion-initiation time (t > t1) until481

the end of the trial, where482

C1 =


.5 0 0 0 0 0
0 .5 0 0 0 0
.7 0 .9 0 0 0
0 .7 0 .9 0 0
0 0 0 0 .7 0
0 0 0 0 −.8 .7

 .

The diagonal elements in matrix C1 indicate that the within-region con-483

nectivity strengths are .5 in R1 and R2, .9 in R3 and R4, and .7 in R5 and484

R6. The self connectivity strengths were all set to be .7 in Ryali et al. (2011)485
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and we used this value for R5 and R6. The instantaneous neuronal acti-486

vations in R3 and R4 are assumed as a result of accumulated evidence so487

their self connectivity strengths have to be larger and close to 1. R1 and488

R2 process visual stimuli so their self connectivity should be smaller than489

R3 and R4. We used .5 to allow some amount of leakage to represent the490

mechanism that part of visual stimulus information is lost in visual stimulus491

processing (McClelland, 1993; Smith, 1995; Usher and McClelland, 2001).492

Then C1[3, 1] = C1[4, 2] = .7 indicates that the connectivity strengths from493

R1 to R3 and from R2 to R4 are both .7. This medium high value indicates494

the proportion of information is passed by from R1 and R2 to R3 and R4, re-495

spectively at each moment. Note that we assume a symmetric pattern in the496

leftward motion pathway (C1[1, 1], C1[3, 3] and C1[3, 1]) and rightward mo-497

tion pathway (C1[2, 2], C1[4, 4] and C1[4, 2]) by equal connectivity strengths.498

C1[6, 5] = −.8 indicates a negative connectivity strength -.8 from R5 to R6,499

and this negative connectivity represents the constant inhibition from R5 to500

R6. All the other connectivity strengths were set to zero.501

During the interval from the threshold-crossing time to the motion-initiation
time (t0 ≤ t ≤ t1), the connectivity matrix changes to C(t) = C2, where the
matrix C2 is identical to C1 except that C2[5, 3] = C2[5, 4] = −.2. That is,

C2 =


.5 0 0 0 0 0
0 .5 0 0 0 0
.7 0 .9 0 0 0
0 .7 0 .9 0 0
0 0 −.2 −.2 .7 0
0 0 0 0 −.8 .7

 .

This change indicates that the connectivity strengths from R3 to R5 and502

from R4 to R5 are both -.2 after the connection paths are switched to “on”503

mode at threshold-crossing time t0, and are later changed back to zero at t1504

when the responses from R6 are initiated. The connection strengths are back505

to zero after t1 to prepare for stimulus presentation in the next new trial.506

The change from C1 to C2 and back to C1 is possible via the dynamic gating507

mechanism.508

The direct input matrix D is composed with diagonal elements for those
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regions with an external input (i.e. R1, R2 and R5), so

D =


.9 0 0 0 0 0
0 .9 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 .9 0
0 0 0 0 0 0

 .

The direct effect coefficients of UL, UR and U5 on R1, R2 and R5 are all509

.9. This value was set to be slightly lower than 1 to represent the fact that510

the strength of physical stimuli (i.e. UL, UR) can only be partially captured511

by visual processing regions (i.e. R1, R2).512

The noise term ω(t) was distributed according to a multivariate nor-513

mal distribution in 6 dimensions, with zero mean and a diagonal variance-514

covariance matrix, which indicates uncorrelated noise across the 6 ROIs. Let515

σ(m)(t) denotes the standard deviation of the noise in the m-th ROI. We set516

all 6 standard deviations to the same value σ1 = 16 throughout the time517

interval before initiating the motor response (t < t1). After t1, the noise in518

the two sensory ROIs was reduced to σ(1)(t) = σ(2)(t) = σ2 = 5, whereas the519

noise in the other regions remained at its former level σ1 = 16.520

The parameters used for observation equation step in Eq. 2 were set as521

follows. The length L of the HRF function was 32s so there were 32,000 data522

points in each hm(τ) in the temporal unit of 1 millisecond. The amplitude523

parameters for the 6 ROIs were A1 = A2 = .0005, A3 = A4 = .00006, A5 =524

.0015, and A6 = .0002. These A’s scale the BOLD signal to be approximately525

within the range from −2 to 2. The amplitude parameters were the same for526

R1 and R2, and same for R3 and R4, so that the magnitudes of BOLD signals527

of R1 and R2, and of R3 and R4 were comparable. The standard deviation528

ξm of the observation error term was set to .05 for all ROIs. We performed529

the linear convolution in Eq. 2 in frequency domain for fast computation530

using a C subroutine library FFTW 3.3.8 (Frigo and Johnson, 2005).531

In the model structure described in Section 3, the threshold θ1 was set to532

be 250 and θ2 was 1,500. The non-decision time τ was set to be 100. The533

number of total time points allowed in one trial was 2,000 (i.e. 2s).534

We further simulated a rapid event-related fMRI design with 30 trials535

at each pL condition. Conditions were interleaved to create a time series of536

trials. In the series of trials, the latent neuronal activation at the last time537
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Figure 5: Behavioral choice and response time distributions from Simulation 1.
Each histogram corresponds to a pL level. Response times corresponding to the left choice
(L) are shown on the negative x−axis, whereas response times corresponding to the right
choice (R) are shown on the positive x−axis.

point of each trial for each ROI was used as the latent neuronal activation538

at the starting time point of the next trial for the corresponding ROI. This539

operation allows trial-to-trial dependencies in the time series data. Each time540

series can be simulated multiple times and so we set the number of simulations541

to be 100 to accurately reflect the patterns in the data. Therefore, each pL542

condition was repeated for 3,000 times.543

4.2. Results544

Under the simulation setup, 99.84% of all the trials produce a left or545

right response within 2s. Fig. 5 shows the behavioral choice and response546

time data from Simulation 1. The nine panels are corresponding to the547

conditions of pL from .1 to .9. In each panel, response times corresponding548

to the left choice (L) are shown on the negative x−axis, whereas response549

times corresponding to the right choice (R) are shown on the positive x−axis.550

This simulation result indicates that as pL increases, the proportion of the551
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Figure 6: Summary of behavioral data from Simulation 1. The left panel shows
choice accuracy at each pL level where accuracy is defined as correctly choosing the di-
rection with more moving dots. When pL is .5, choosing right direction is defined as the
correct choice. The right panel shows the mean response time at each pL level. Error
bars are included considering the number of simulation (3,000) at each pL level (excluding
number of non-response trials), and are extended to ±2 standard errors about the mean
response times.

left choice increases, along with the decrease of the right choice. When pL552

equals to .5, approximately the same number of choices are made between553

left and right alternatives (49.48% of right choice in the simulation). Recall554

that pL represents the input strength of the leftward motion relative to the555

total input strength of leftward and rightward motion. Therefore, when pL556

increases, the input strength for the leftward motion increases, along with the557

decrease of the input strength for the rightward motion, so the proportion of558

the leftward choices increases.559

We summarize the simulated behavioral results in Fig. 6 by showing how560

accuracy and mean response time change with pL. In the left panel, accuracy561

is defined as correctly choosing the direction with more moving dots. Fig. 6562

shows that accuracy decreases when pL increases from .1 to .5 and increases563

when pL goes from .5 to .9. The accuracy pattern is symmetric around pL =564

.5, and this symmetric pattern is also shown on the mean response time in565

the right panel. The symmetric pattern in the behavioral data originates566

from the symmetric net coherence in Table 1. Previous studies with the567
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Figure 7: Simulated BOLD signal for each ROI from Simulation 1. The red dots
are signals after downsampling and black lines connect neighboring dots.

random dot motion paradigm have shown that the net coherence serves as568

an indicator for the difficulty of the task (Britten et al., 1992; Roitman and569

Shadlen, 2002; Salzman and Newsome, 1994; Shadlen and Newsome, 2001).570

Therefore, our simulated random dot motion task becomes harder as pL goes571

from .1 to .5 and becomes easier as pL goes from .5 to .9, which is reflected572

in the behavioral data.573

Fig. 7 illustrates an example of the simulated BOLD signal for six ROIs574

from one simulation. The red dots are signals after downsampling and black575

lines connect neighboring dots. Every trial has a duration of 2s and there576

are 270 trials in one simulation. With assumed TR = 1s, we have 2 samples577

in each trial and thus 540 BOLD data points in total. The shape of the578

oscillations is due to the HRF shape in Eq. 3 and is similar with the typical579

BOLD signal from real experiments. We observe that there are very similar580

simulated BOLD signals in R1 and R3, and also in R2 and R4, across trials.581

This similarity is expected because in every trial, the neuronal activations in582

R3 and R4 are directly affected by R1 and R2, respectively. The differences583

across time points between R1 and R3 and between R2 and R4 within each584
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Figure 8: GLM fits for simulated BOLD signal from MDS model in Simulation
1 and the convolved pL conditions in each ROI. The orange dots illustrate the
correlational patterns in each ROI and red straight lines show least square fits of GLMs.
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trial (as illustrated in Fig. 4) are cancelled in the downsampling process.585

To further investigate the pattern of neural data, we fit the general linear586

model (GLM) to the simulated BOLD signal in each ROI, with the inter-587

leaved 9 pL conditions (.1, .2, . . . , .9) as the explanatory variable. Following588

traditional fMRI data analysis procedure, we convolved the interleaved 9589

conditions with the same HRF in Eq. 3 before fitting the GLM and denote590

convolved pL conditions as X. For the simulated BOLD signal, we computed591

the average of BOLD signal over 100 simulations for six ROIs and denote as592

a matrix Y. GLM assumes593

Y = Xβ + E,

where β is the linear coefficient vector and E is an uncorrelated error594

term following the multivariate normal distribution. Fig. 8 illustrates cor-595

relational pattern in each ROI with the orange dots and shows the least596

square fit of GLM by the red straight lines. There are significant correla-597

tions in R1 (β̂1 = .044, p = 1.48e−11), R2 (β̂2 = −.057, p = 2.77e−16), R3598

(β̂3 = .038, p = 9.56e−10), and R4 (β̂4 = −.050, p = 1.37e−14), but are599

not significant correlations in R5 and R6. This pattern is consistent with600

the model assumption, as R1 and R2 process visual motion for leftward and601

rightward moving, respectively, and R3 and R4 accumulate neuronal evidence602

of leftward and rightward motion, respectively. Although the pair of R1 and603

R3, and the pair of R2 and R4 both produce similar BOLD signals as shown604

in Fig. 7, the correlations in R1 and R2 are slightly stronger than those in605

R3 and R4, respectively. R1 and R2 process the input of motion information606

(i.e. UL and UR) directly, but R3 and R4 access the motion information indi-607

rectly mediated by R1 and R2. More motion information is lost after passing608

through R1 and R2.609

As a short conclusion, Simulation 1 generated behavioral and neural data610

from a random dot motion task with unequal coherence. Both behavioral611

and neural data show qualitatively comparable characteristics with real ex-612

perimental data.613

5. Simulation Study 2: Balanced coherence614

In Simulation 1, we treated the dots moving towards other directions other615

than leftward or rightward as the irrelevant “noise” and did not explicitly616
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model them. Although behavioral and neural predictions in Simulation 1617

were qualitatively similar to real data, it is worth considering if these dots618

can be treated as irrelevant noise. In the next simulation, we aim to simulate619

the scenario where the leftward dots and rightward dots are of equal amount620

but the ratio of their summed amount compared to the total amount of621

dots vary. This way, we are able to detect if the moving dots towards other622

directions play a role in the random dot motion paradigm. If these dots are623

indeed irrelevant, the model should predict similar predicted behavioral and624

neural results with the varied ratio. However, if these dots have an effect on625

the decision making process, the predicted behavioral and neural data could626

provide insights to the understanding of the problem.627

In fact, this situation of balanced coherence is related to the argument be-628

tween sensitivity to absolute values and to relative values (Teodorescu et al.,629

2016). Promoters of the relative values postulate that decision making is630

guided by the relative value difference of the two alternatives, in terms of631

either the difference or the ratio (Brown and Heathcote, 2008; Ratcliff and632

Rouder, 1998; Roe et al., 2001; Tversky and Simonson, 1993). However,633

others argue that task irrelevant absolute values are also important (Usher634

and McClelland, 2001). In other words, the absolute value of the alterna-635

tives cannot be simply represented by the relative value. Behavioral data636

from equal-valued decision making tasks show that equal-but-low-value al-637

ternatives need longer processing time compared with equal-but-high-value638

alternatives (Pirrone et al., 2014; Teodorescu et al., 2016), implying the im-639

portance of absolute value of choice alternatives. The balanced coherence of640

leftward and rightward dots thus provides an appropriate emulation of this641

situation.642

5.1. Parameters643

We still used 1,000 random dots in total, but the 1,000 random dots con-644

tained the same probability of leftward and rightward dots, along with dots645

in other arbitrary moving directions. The effects of dots in other moving di-646

rections were still assumed to be offset by summing up. In the 1,000 dots, the647

probability of leftward dots pL (and also rightward dots pR) was manipulated648

across .1, .2, .3, .4 and .5, so the probability of the dots moving towards other649

directions (pothers) was correspondingly .8, .6, .4, .2 and 0. From stimulus650

onset to movement-initiation time t1, the numbers of leftward dots, rightward651

dots and the others were randomly sampled from a Multinomial distribution,652

such that653
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Figure 9: Summary of behavioral data from simulation 2. The left panel shows
proportion of left response at each pL level where a dashed line indicates proportion of
.5 as a reference. The right panel shows mean response time at each pL level using the
barplot. Error bars are included considering the number of simulation (3,000) at each pL
level (excluding number of non-response trials), and are extended to ±2 standard errors
about the mean response times.

(UL(t), UR(t), Uothers(t)) ∼ Multinomial(1000, (pL, pR, pothers)), t = 1, . . . , t1

where UL, UR and Uothers are the number of dots moving towards left,654

right and any other direction, respectively. pL, pR and pothers are Multinomial655

distribution parameters indicating the probabilities for random dots to move656

towards each of the directions. UL(t) and UR(t) were again both divided by657

100. The other parameter settings in this simulation were exactly the same658

as those in Simulation 1.659

5.2. Results660

Under the simulation setup, 99.12% of all the trials produce a left or661

right response within 2s. Fig. 9 shows the simulated behavioral data of662

response proportion and mean response time as pL (or pR) increases from663

.1 to .5, with non-response trials excluded. Not surprisingly, almost equal664

proportion of left choices and right choices are made across pL (or pR) from665

.1 to .5, because the input stimuli provide equal amount of strength for666

the leftward and rightward moving dots. However, the mean response time667

shows a decreasing trend as pL increases. This result successfully recovers668
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the key response time data findings in previous studies (Pirrone et al., 2014;669

Teodorescu et al., 2016).670

To investigate the pattern of neural data, we fit GLM to the simulated671

BOLD signal in each ROI, with the interleaved 5 pL conditions (.1, .2, . . . , .5)672

as the explanatory variable. Fig. 10 shows correlational patterns in each ROI,673

same as in Fig. 7. The least square fits in red straight lines give significant674

correlations in all six ROIs: R1 (β̂1 = .173, p = 2.2e−16), R2 (β̂2 = .171, p =675

2.2e−16), R3 (β̂3 = .164, p = 2.2e−16), R4 (β̂4 = .160, p = 2.2e−16), R5676

(β̂5 = −.058, p = 3.7e−9), and R6 (β̂6 = .009, p = .008). Comparing with677

Fig. 7, the correlations are much stronger in all six ROIs, and correlations in678

R5 and R6 are both significant in terms of p-value. However, the plots of R5679

and R6 do not show any correlational patterns. The significant correlations680

are likely to be driven by a few potential “outlier” points.681

As a short conclusion, Simulation 2 adopted balanced coherence for two682

directions and generated behavioral choice and response time data, consistent683

with empirical findings. This simulation endorses the ability of the MDS684

framework to accommodate different type of task configuration in simulating685

behavioral and neural data.686

6. Fitting the Model to Data687

In this section, we investigate the model’s inferential properties, with688

three questions in mind. First, can the model be fit to data? For models like689

MDS, this is a complicated problem as the model must be fit to the entire690

time series of neural and behavioral data. Importantly, as we do not assume691

that data are independent and identically distributed, fitting the model to692

data also entails capturing trial-to-trial dependencies (Turner et al., 2015b;693

Turner, 2019; Wagenmakers et al., 2004). Second, are the model parameters694

identifiable? Identifiability refers to a property of a model such that any695

particular parameter value maps to a unique probability density function696

(Bamber and Van Santen, 2000). Hence, our goal is to provide some initial697

evidence that for a given distribution of data, the model parameters have698

a unique solution. Third, if successful in fitting the model to data, are the699

recovered parameters veridical? In other words, are the estimated parameters700

similar to the true parameters used to generate the data?701

To investigate these questions, we performed a model recovery study. We702

first generated synthetic data – similar to the experiments reported in the703

previous two sections – and then fit the model to the generated data. We704
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Figure 10: GLM fits for simulated BOLD signal from MDS model in Simulation
2 and the convolved pL conditions in each ROI. The orange dots illustrate the
correlational patterns in each ROI and red straight lines show least square fits of GLMs.
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chose to use Bayesian inferential techniques because the resulting posterior705

distribution would allow us to simultaneously assess both the accuracy of the706

estimates (i.e., the central tendency of the posterior), and the uncertainty707

about them (i.e., the posterior’s spread over the parameter space). As the708

model’s likelihood function is analytically intractable, we used approximate709

Bayesian methods to form an approximation of the likelihood. Hence, our710

statistical methods enable us to answer our second question by assessing the711

shape (i.e., the concavity) of the posterior distribution, and our third question712

by comparing the central tendency of the posterior to the true values used713

to generate the data. The first question is answered by procuring solutions714

to the latter two questions.715

6.1. Data Generation and Problem Statement716

To emulate a real experimental setting, we assumed that each of the nine717

pL conditions consisted of 30 trials, and all the conditions were interleaved.718

Therefore, the generated data consists of 270 trials, where each trial is associ-719

ated with a choice and response time, except for one trial where no response720

is made during 2s. The choice for the non-response trial is coded differ-721

ently than the other trials and its existence shows no effect on the estimation722

process. In addition, each trial period has an associated neural time series723

matrix where we assumed a one second fMRI acquisition sequence (i.e., the724

TR). Because each stimulus presentation period lasted for two seconds, each725

of the six neural time series vectors consisted of 540 data points. Notice that726

each time series was simulated for just one time, different from Section 4727

and Section 5 where each time series was simulated for 100 times. Hence we728

would reasonably expect this randomness in data generation to be included729

in the posterior estimates.730

Estimating the full matrices C1, C2 and D in Eq. 1 poses a great com-731

putational challenge. We chose to limit our scope by decomposing these732

matrices into their key individual elements, where Table 2 lists all of the im-733

portant parameters from this decomposition. The first column provides the734

parameter notation, the second column describes the parameter’s function,735

and the third column is the true value that was used to generate the dataset.736

For this analysis, we focused on recovering five key parameters: a1, c2, θ1, σ1737

and A12. We chose parameters a1, c2 and σ1 from MDS state equation (Eq.738

1) , A12 from observation equation (Eq. 2), and θ1 from the model structure,739

trying to include parameters from different sources.740
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For the purposes of recovery, we allowed these five parameters to freely741

vary while keeping other parameters in Table 2 fixed to their true values. In742

terms of implementation, estimation requires that we search the space of all743

possible combinations of the model parameters, and evaluate their relative744

probabilities of having generated the data.745

Parameter Description value

c0 Within-region connection strength of R5 and R6 .7

c1 Within-region connection strength of R1 and R2 .5

c2 Within-region connection strength of R3 and R4 .9

a1 Connection strength from R1 to R3 and from R2 to R4 .8

a2 Connection strength from R3 to R5 and from R4 to R5 -.2

a3 Connection strength from R5 to R6 -.8

d1 Direct effect from U1 to R1 and from U2 to R2 .9

d2 Direct effect from U5 to R5 .9

τ Non-decision time 100

θ1 Threshold value for the difference between R3 and R4 250

θ2 Threshold value for accumulated movement information in R6 1,500

σ1 Standard deviation of the noise term before t1 16

σ2 Standard deviation of the noise term in R1 and R2 after t1 5

A12 Magnitude parameter in the canonical HRF function for R1 and R2 .0005

A34 Magnitude parameter in the canonical HRF function for R3 and R4 .00006

A5 Magnitude parameter in the canonical HRF function for R5 .0015

A6 Magnitude parameter in the canonical HRF function for R6 .0002

ξm Standard deviation of observation error of BOLD signal .05

Table 2: Summary of parameter in the perceptual decision making MDS model.
The first column provides the parameter notation, the second column describes the pa-
rameter’s function, and the third column is the true value that was used to generate the
dataset.
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6.2. Estimation Methods746

When using Bayesian statistics, acquiring any posterior distribution de-747

pends on efficient evaluation of two functions: (1) the prior distribution for748

the model parameters, and (2) the likelihood function relating the model pa-749

rameters to the observed data. The posterior distributions π(θ | XO) reflect750

our knowledge about a parameter set θ after observing a dataset XO, and it751

is obtained by combining the prior π(θ) with the likelihood of a parameter752

set θ:753

π(θ | XO) ∝ π(θ)L(θ | XO). (4)

The prior distribution π(θ) reflects our knowledge of the parameter set754

θ before observing XO, and is typically easy to specify in terms of defining755

its functional form. However, the likelihood function L(θ | XO) is often756

much more difficult to derive. For simulation-based models that attempt to757

provide mechanistic explanations for how data manifest, direct evaluation758

of the likelihood function can be difficult, if not impossible. Unfortunately759

for us, the MDS model is one such simulation-based model with complex,760

stochastic characteristics, and these features of the model make its likelihood761

function intractable.762

6.2.1. Likelihood Estimation: Kernel-Based ABC763

To approximate the likelihood function of the MDS model, we used kernel-764

based approximate Bayesian computation (KABC) method (Palestro et al.,765

2018b; Turner and Sederberg, 2012; Turner and Van Zandt, 2014, 2018;766

Turner et al., 2013a). As in a typical ABC approach, KABC requires that767

we first define a discrepancy function ρ(·), and use it to compare the “dis-768

tance” between the simulated data (XS) and observed data (XO), where the769

simulated data are generated by XS ∼ MDS(θ) for a given parameter vector770

θ = {a1, c2, θ1, σ1, A12}. When using KABC, we filter these distances by ap-771

plying a continuous weighting function ψ(·|δ) to ρ(·) to determine how closely772

XS matches XO. The parameter δ serves as a tuning parameter that con-773

trols the resolution of the “closeness” between XS and XO. When ψ(·) obeys774

certain properties (e.g., symmetric, unimodal), the term ψ(ρ(XS, XO)|δ) in-775

creases as XS becomes more similar to XO. As an example, perhaps the776

most common choice for ψ(·|δ) is a Gaussian distribution centered at zero777

with standard deviation equal to δ. In this example, as δ decreases, larger778

weights in ψ(·|δ) will be obtained if XS ≈ XO, but a larger penalty will779
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be applied when the simulated data XS are different from XO. Hence, the780

choice of δ is an important one for accurately comparing XS to XO, an issue781

we discuss below.782

For a static set of simulated data XS, we could then just find the set783

of parameter values θ that maximize ψ(·|δ), a relatively straightforward op-784

timization problem. However, there is often considerable variability in the785

model generation process, where even for a fixed parameter value θ, we can786

arrive at very different sets of XS. Hence, we can think of the data genera-787

tion process as detailing a joint distribution over candidate parameter values788

θ and random realization of simulated data XS. As our goal is to estimate789

θ and we do not care about the variability in XS, we can obtain a posterior790

estimate by integrating out the variability in XS:791

π(θ | XO) ∝
∫
π(θ)Model(x | θ)ψ(ρ(x,XS) | δ)dxS, (5)

where Model(x | θ) denotes the density of data produced by the model792

simulation.793

While the argument above has been constructed assuming XO and XS
794

are scalars, for our estimation problem, our data consist of two time series795

vectors – one for choice data C and response time data RT – and one time796

series matrix consisting of BOLD signal data Y for each of the six ROIs.797

Hence, XO = {CO, RTO, Y O} and XS = {CS, RT S, Y S}. To compare XO
798

and XS, we assumed these variables were conditionally independent, and799

factorized the likelihood approximation:800

L
(
θ|XO

)
∝ ψ

[
ρ
(
XO, XS

)
|δ
]

=
∏
i

ψ
[
ρ
(
RT Si −RTOi

)
|δ1
]∏

i

ψ
[
ρ
(
CS
i − CO

i

)
|δ2
]

×
∏
m

∏
k

ψ
[
ρ
(
Y S
m(k)− Y O

m (k)
)
|δ3
]
.

(6)

To stabilize the variability in the data generation process (Toni et al., 2009),801

for each parameter proposal, we simulated the model 10 times and averaged802

the data CS, RT S, and Y S
m(k). With a suitable likelihood approximation803

in hand, we can substitute Eq. 6 into Eq. 4, and estimate the posterior804

distribution π(θ | XO).805
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6.2.2. Posterior Sampling806

We used numerical Monte Carlo approximation techniques to estimate807

the joint posterior distribution. Specifically, we used differential evolution808

with Markov chain Monte Carlo (DE-MCMC; ter Braak, 2006; Turner et al.,809

2013c, 2015b) to draw samples from Eq. 4. We chose DE-MCMC as it has810

been shown to be a highly efficient sampling method relative to MCMC,811

especially when sampling from posterior distributions whose parameter di-812

mensions are correlated (Turner et al., 2013c).813

Although Eq. 6 suggests that the tuning parameter δ = {δ1, δ2, δ3} are814

fixed, it is difficult to specify these parameters in advance. As we suggested815

above, finding the best values for δ is a difficult problem with grave con-816

sequences regarding the variance of the posterior distribution. Because de-817

creasing δ increases the accuracy of the estimated posterior, one may be818

tempted to simply set δ to zero. However, with decreases in δ come other819

computational problems. Specifically, decreases in δ make it difficult to ob-820

tain high-quality estimates because of the sharp gradient associated with821

ψ(·|δ). If the variability in the data generation process is large relative to the822

width of ψ(·|δ), the chains of the sampling algorithm will tend to “stick” in823

the posterior distribution and will not sample from the posterior effectively.824

To balance these two opposing forces, we used the Approximate Bayesian825

Computation with Differential Evolution (ABCDE) (Turner and Sederberg,826

2012) algorithm to implement DE-MCMC sampling within the KABC likeli-827

hood approximation. ABCDE is unique as it uses two “modes” of sampling:828

a “burn-in” mode and an “sample” mode. In burn-in mode, ABCDE uses829

a specific optimization rule for moving the chains of the algorithm into the830

region of the posterior with highest density. To do this, ABCDE proceeds by831

optimizing Eq. 5 with respect to both θ and δ simultaneously. After some832

number of iterations, the values of δ asymptote to values that are as small as833

possible, but still enable efficient sampling from the posterior distribution of834

θ. After this point is reached, the algorithm switched to the sample mode,835

where δ is set to their lowest value obtained during the burn-in phase, and836

only θ is estimated.837

We ran the burn-in phase of the ABCDE algorithm with 24 chains for838

2,000 iterations, optimizing with respect to both θ and δ. After this initial839

phase, we set each δ to their respective (rounded) mean values, where δ1 =840

100, δ2 = 1 and δ3 = .4, respectively. Henceforth, we used the sample mode841

of ABCDE to obtain posterior estimates of only θ, running the algorithm842
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for an additional 3,000 iterations, but discarded the first 1,500 iterations as843

an additional burn-in period (i.e., to allow the chains to spread out into the844

posterior distribution). Hence, our posterior estimates are based on 36,000845

samples. A migration step (see Turner and Sederberg, 2012; Turner et al.,846

2013c) was used during the second burn-in period with probability 0.2 for the847

first 400 iterations, after which time the migration step was terminated. We848

also used a purification step every 10 iterations to ensure that the chains were849

not stuck in spuriously high regions of the approximate posterior distribution850

(Holmes, 2015). Convergence was checked by visual inspection.851

We also estimated posterior densities by behavioral-only data or neural-852

only data to compare with the density from the joint model. Specifically, in853

behavioral-only estimation, XO = {CO, RTO} and XS = {CS, RT S}, and854

in neural-only estimation, XO = {Y O} and XS = {Y S}. The estimated855

likelihoods were constructed in the similar way as in Eq. 6, but we reduced856

the multiples according to the elements in XO and XS. We used δ1 =857

100 and δ2 = 1 for behavioral-only estimates and δ3 = .4 for neural-only858

estimates. Again, we used the sample mode of ABCDE to obtain posterior859

estimates, running the algorithm for 3,000 iterations with the first 1,500860

iterations discarded. Migration and purification steps were performed in the861

same way as in joint estimation.862

6.3. Prior Specification863

To complete the specification in the Bayesian framework, we must specify864

priors for each of the model parameters. As we had no a priori beliefs about865

the model parameters, we chose the following uninformative priors for joint866

estimation, behavioral-only estimation and neural-only estimation:867

c2 ∼ U(0, 1),

a1 ∼ U(0, 1),

θ1 ∼ U(0, 1000),

σ1 ∼ U(0, 100), and

A12 ∼ U(0, 1),

where U(a, b) denotes a uniform distribution with lower bound a and upper868

bound b.869

6.4. Results870

Fig. 11 shows a comparison of the estimated posterior densities for pa-871

rameters c2, a1, θ1, σ1 and A12 by the 36,000 posterior samples. The blue,872
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Figure 11: Comparison of posterior estimates. The estimated posterior density for
each parameter informed by only neural data, only behavioral data, or jointly neural and
behavioral data. Densities are smoothed using Gaussian kernels with widths .2, .5, 100,
10 and .0005 for parameter c2, a1, θ1, σ1 and A12 for illustration, respectively. The true
parameter values are indicated by dashed red lines.
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black and green lines indicate the posterior densities for each parameter in-873

formed by behavioral data-only, neural data-only, and jointly informed by874

behavioral and neural data, respectively. The red dashed lines indicate the875

true parameter values. Across all five parameters, the neural and joint es-876

timates are near their true value. While estimates having only behavioral877

data are generally worse than the other modalities, the posteriors still con-878

tain the true parameter value (except for A12). For parameter c2, the neural879

density and joint density cover similar range but the joint density is closer880

to the true parameter value compared to the neural density. The behavioral881

density, on the contrary, has larger range of support for the posterior density882

and is more distant from the true parameter value compared with the other883

two. For parameter a1, the neural density, behavioral density and joint den-884

sity all include the true parameter value, whereas the behavioral density and885

joint density have higher peaks. For parameter θ1, the joint density is close886

to the neural density, but the joint density is closer to the true parameter887

value. The behavioral density is more flat compared to the other two. For888

parameter σ1, the joint density and neural density are close, but still the889

joint density is closer to the true parameter value. The behavioral density890

shows the best recovery performance for σ1 among three, which is possible891

due to the critical importance on controlling signal-to-noise ratio of σ1. The892

last parameter A12 differs from all the other four as it does not have a direct893

influence on behavioral data in the simulation process. Hence, the behavioral894

density is shown as a horizontal line. The neural and joint densities are close895

and both contain the true parameter value around their peaks. The joint896

density, however, has a slightly higher peak than the neural density and this897

trend can be due to the correlation between free parameters - correlations898

between free parameters make the estimation of one parameter able to inform899

the estimation of other parameters (Turner et al., 2019a). This comparison900

of posterior densities suggests the benefit by including both behavioral and901

neural data.902

Fig. 12 shows the estimated posterior distributions informed by both be-903

havioral and neural data for parameters c2, a1, θ1, σ1 and A12 by the 36,000904

posterior samples. The panels on the diagonal show the marginal posterior905

distributions, where a dashed red vertical line indicates the true parame-906

ter value that was used to generate the observed data, and the dashed blue907

vertical line indicates the mean of the posterior estimates. All marginal pos-908

terior distributions deviate from their respective uniform priors, suggesting909

that the likelihood approximation is affecting the estimates. c2 and a1 are910
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Figure 12: Estimated joint posterior distributions. The estimated marginal posterior
distribution for each parameter is shown on the diagonal entries, whereas the estimated
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39



both left-skewed, and this skewness is likely as their prior distributions are911

constrained to be less than 1. θ1, σ1 and A12 all have right-skewed posterior912

distributions. All five posterior means are close to the true parameter values.913

Each parameter estimate is well constrained and unimodal (except for some914

irregularities in a1), suggesting that the model is securely identifiable.915

The bottom left of the diagonal in Fig. 12 displays the pairwise joint916

posterior distributions between all five parameters, where the x− and y−917

axes can be inferred from the marginals. In each panel, the black “x” symbol918

indicates the true value of the parameter that generated the data. The top919

right of the diagonal displays the pairwise correlation coefficients. Combining920

the correlation plots and coefficients, we observe a strong negative correlation921

between c2 and a1 and a strong positive correlation between θ1 and σ1. These922

strong correlations are interpretable under model specifications. Recall that923

c2 represents the within-region connection strength of R3 and R4 and a1924

represents connection strength from R1 to R3 and from R2 to R4. Therefore925

a reduction in a1 should occur with an increase in c2 so that both R3 and R4926

can still accumulate the same amount of evidence. Regarding the positive927

correlation between θ1 and σ1, θ1 is the threshold value that the absolute928

difference of neuronal activations that R3 and R4 accumulate toward and929

σ1 controls the signal-to-noise ratio of the system. When σ1 increases, the930

neuronal activation variations increase. The threshold value also needs to be931

higher, otherwise the neuronal activation variations could easily reach the932

threshold by random.933

As a short conclusion, the parameter recovery study has suggested at least934

partial identifiability of the MDS model structure by estimating some impor-935

tant model parameters. The likelihood free algorithm KABC contributes to936

the parameter recovery of the MDS model. The posterior distribution of937

those estimated parameters captures the true parameter values and the pos-938

terior means are close to the true values. Hence the recovered parameters939

are veridical.940

7. Discussion941

In the present article, we have proposed and investigated a new framework942

for simultaneously modeling neural and behavioral data. Theoretically, it dif-943

fers from the previous simultaneous modeling attempts in that both neural944

and behavioral data are linked by the same generative process, rather than945

linking them through an agnostic, parametric transformation. This theoret-946
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ical distinction produces a statistical distinction in that integrative models947

are more closely connected to the data. Whereas covariance approaches as-948

sume conditional independence between model parameters and data (i.e., by949

using different “submodels”), the integrative approach is directly committed950

to both streams of data: changes in a single parameter will affect the model951

predictions for both neural and behavioral data. The outcome of this direct952

connection is that it enables more precise model parameter estimates, as was953

shown when comparing the integrative model to models that only considered954

behavior or neural data. Although we have shown the utility of the MDS955

framework in two simulation studies and a parameter recovery study, there956

are a number of extensions and possibilities that we did not explore in the957

present article. In the following sections, we will discuss a few of these open958

questions and relationships as well as relating our work to previous efforts.959

7.1. Comparison with DCM/MDS960

Our extended MDS departs from other DCM/MDS models (Daunizeau961

et al., 2009; Friston et al., 2003; Marreiros et al., 2008; Ryali et al., 2011;962

Stephan et al., 2008, 2010) in several important ways. First, it incorporates963

the standard sequential sampling assumptions prevalent in extant models964

of evidence accumulation models to generate predictions for behavioral data.965

The self-connection parameters in the accumulation nodes (i.e. C[3, 3], C[4, 4])966

are constrained to be less than and close to 1, which is analogous to hav-967

ing a “leakage” term often used in accumulator models (McClelland, 1993;968

Smith, 1995; Usher and McClelland, 2001). The two threshold parameters969

θ1 and θ2 are analogous to the threshold term commonly used in evidence970

accumulation models (for a review, see Ratcliff and Smith, 2004). However,971

deciding which subset of ROI(s) represent the accumulation of evidence is a972

nontrivial problem. In perceptual decision making, the LIP and FEF regions973

are well-established areas that may reflect the accumulation mechanism. For974

extensions of the model presented here to other cognitive processes, different975

configurations of the accumulation process may need to be considered. For976

example, building in a separate valuation process to represent the subjective977

strength of hedonic stimuli may need to operate prior to, or integrated within,978

the accumulation process described here (e.g., Turner et al., 2018). Com-979

pared to the behavior DCM approach (Rigoux and Daunizeau, 2015) where980

behavioral responses are predicted by a sigmoid mapping function of the981

latent neuronal activations, our approach allows continuous response times982

rather than only binary response choices. More importantly, our approach983
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provides mechanistic explanations for cognitive processes with interpretable984

model parameters (e.g. leakage, threshold, non-decision time).985

Second, we have relaxed the connectivity parameters from being fixed986

throughout the time course to being temporally variant. In particular, we987

allow the endogenous connectivity matrix C(t) to change from C1 to C2988

after threshold-crossing time t0 and back to C1 after movement initiation989

time t1 in each experimental trial. This change adds a complex nonlinearity990

to the MDS model, making it analytically intractable. For this reason, we991

recommend using fixed connectivity matrices as an initial exploratory step,992

and only allowing the connectivity matrices to change if there are explicit993

justifications for doing so. Such a tendency toward parsimony is productive in994

that it reduces the number of parameters that need to be estimated, provides995

strong constraints on the model, and helps to reduce any potential overfitting996

tendency in the model. Furthermore, the time points t0 and t1 for these997

changes to take place are determined by the interplay between the state998

equation Eq. 1 and the accumulation process in R3 and R4. Therefore,999

the accumulation process has a direct effect on the endogenous connectivity1000

matrix and hence on the neural prediction. After t1 when the response is1001

initiated from R6, C(t) is changed from C2 to C1 to reflect a “resting stage”1002

where neurons are prepared for the next trial. Except for the connectivity1003

matrix, the noise term of neuronal activations in R1 and R2 drops from1004

σ1 to σ2 (i.e., σ1 > σ2) after t1, which also reflects the resting stage after1005

the response is initiated from R6. The inputs UL and UR are set to be1006

zero after t1 to indicate the termination of processing visual stimuli at this1007

time point. By introducing such changes, we intend to consider underlying1008

cognitive processes, behavioral responses and neural activities as a whole,1009

rather than map one as a transformation of another. Hence, our framework1010

can be thought of as an integrative approach to modeling behavioral and1011

neural data simultaneously (Turner et al., 2017b, 2019a).1012

As an early attempt to explicitly modeling behavioral data (choice and1013

response time) as well as fMRI BOLD signal, we did not include modulatory1014

terms or nonlinear terms in the state equation Eq. 1 compared with pre-1015

vious efforts (Friston et al., 2003; Marreiros et al., 2008; Ryali et al., 2011;1016

Stephan et al., 2008). On the other hand, the model is enriched by incor-1017

porating parameters representing an accumulation to bound process, and so1018

there is not presently a clear conclusion about the complexity of our model1019

relative to others. The current model specification might be thought of as1020

a new, mechanistic version of DCM/MDS, where it is capable of explaining1021
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behavioral data as an extra benefit.1022

Another difference between our extended MDS framework and DCM is1023

that DCM facilitates model comparisons based on model evidence, so that1024

different hypotheses about the connections among brain regions and how1025

external input affects their interactions can be tested. Although we have not1026

explicitly provided guidelines for how MDS could enable model comparison,1027

we expect that analogous comparisons are easily made. For example, to1028

avoid issues like model misspecification, one can directly compare a model1029

that is intentionally misspecified to one that is not expected to be. Once1030

each of these models are fit to data, one can simply compare the quality of1031

those model fits. Models that are misspecified are expected to mismatch the1032

pattern of data by design, so if they do not, then one can conclude that the1033

data are not sufficiently able to identify models that are misspecified from1034

those that are not. A more complex alternative is to test new mechanisms in1035

the model by making a set of models with different mechanistic assumptions.1036

For example, one could compare the baseline MDS model presented here to1037

another model that includes a lateral inhibition mechanisms between R1 and1038

R2, or between R3 and R4 (e.g., Ashby et al., 2007; Usher and McClelland,1039

2001). The addition of the inhibition mechanism would need to be justified by1040

fitting to the data better than a model without inhibition, and the assessment1041

of justification can easily be made by existing model performance metrics that1042

balance fit to data with penalty terms for model complexity. It would also1043

be possible to compare models with different configurations of C(t) to guide1044

decisions about how flexible the connectivity matrix should be in the time1045

course of a cognitive process. In summary, although we didn’t compare many1046

different MDS models, we recommend that MDS can be used as a way to1047

instantiate several different hypotheses within a computational model, where1048

the models’ fit to data, balanced for complexity, can be used to provide1049

support for specific hypotheses about how the brain produces behavior.1050

7.2. ROI definition and identification1051

We defined six different ROIs in the perceptual decision making MDS1052

model throughout the article. Here we discuss the possibility of identifying1053

those ROIs from real fMRI data and some potential issues with defining and1054

identifying the set of ROIs.1055

Theoretically, R1 and R2 can be identified by using MVPA methods and1056

the tuning curve property of neurons within visual cortex (especially MT1057

and MST; Kamitani and Tong, 2005, 2006; Serences and Boynton, 2007a,b).1058
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However, in practice, the ability of MVPA for this purpose remains contro-1059

versial. For example, MVPA classifiers may not find all the voxels that are1060

relevant to represent the feature values, as they tend to overweight the im-1061

portance of voxels that provide discriminative information and underweight1062

voxels that are common to both (Norman et al., 2006). We have constrained1063

R1 and R2 to only encode the properties of the external stimulus through UL1064

and UR, respectively, but this constraint could be relaxed to construct more1065

realistic models.1066

The nodes R3 and R4 are assumed to stand for separate voxels inside1067

FEF and LIP. We treated FEF and LIP as a single ROI due to the similar1068

functional roles of LIP and FEF in the perceptual decision making task. This1069

assumption might lead to some issues, as it implies equal self-connectivity1070

within FEF and LIP, which has not been supported by empirical results.1071

Future investigations should consider MDS models with separate nodes rep-1072

resenting similar functional roles. Also, we assumed that there are separate1073

voxels responsible for integrating leftward and rightward motion information1074

within FEF and LIP, but this assumption is not widely accepted.1075

Furthermore, the typical spatial resolution of fMRI may not be able to1076

locate the output nuclei of basal ganglia (i.e. R5). Although our frame-1077

work assumes that neurons inside of an ROI carry homogeneous functions1078

and share the same neuronal activations – a common assumption in cogni-1079

tive neuroscience – the functional homogeneity of voxels inside an ROI has1080

been shown to vary across ROIs and change in time (Korhonen et al., 2017;1081

Ryyppö et al., 2018). Hence, inhomogeneity of voxels within an ROI will1082

create a significant challenge to the static node definition used here.1083

Following the direction of information transformation in Fig. 3, there1084

are four layers that contain multiple nodes, from visual cortex to pre SMA1085

downstream. Thus the MDS framework can be viewed as a variant of neural1086

network models, and it can be generalized to look more similar to neural1087

network models by adding more units to each layer. This direction of gen-1088

eralization is reasonable, as the overall average activation of each ROI may1089

be insufficient to represent the neural information contained in the ROIs, ac-1090

cording to pattern-based information representation. Ideally, we can further1091

parcelize ROIs into multiple nodes and use connectivity matrices for nodes1092

between two layers, instead of scalar weights. The generalization requires1093

overcoming at least two major difficulties though. First, when each layer1094

contains more than two nodes, it is much harder to find the corresponding1095

neural voxels for each node in that layer, and so it increases the complexity to1096
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generate neural predictions for each node. The second difficulty comes from1097

the well-known identifiability challenge and overfitting issue in neural net-1098

work models. Allowing more nodes in each layer and connectivity matrices1099

inevitably hinders the possibility of the model being identifiable.1100

7.3. Methods for Parameter Estimation1101

In this article, we have also investigated parameter recovery. To fit the1102

model to data, we combined Bayesian MCMC posterior sampling with a1103

kernel-based likelihood approximation method, known as kernel-based ABC1104

(Palestro et al., 2018b). The kernel-based ABC method gives an approx-1105

imation of the likelihood by considering summary statistics of three time1106

series quantities: one for behavioral choice, one for behavioral response time,1107

and one for the set of neural activations in the model. Kernel-based ABC1108

techniques have the downside of having “tolerance” parameters where pre-1109

dictions of the model are compared to the observed data by measuring the1110

discrepancy between them through a localized regression technique (Beau-1111

mont, 2010). Hence, while posteriors can be perfectly recovered with the1112

discrepancy of the residual term is zero, it is often impossible for the resid-1113

uals to be perfectly zero. This implies that any posterior approximation1114

will have some error (e.g., have some increased variance) relative to the true1115

posterior.1116

An alternative to this approach is the probability density approximation1117

(PDA; Miletić et al., 2017; Molloy et al., 2019; Turner and Sederberg, 2014;1118

Turner et al., 2015a; Turner and Van Zandt, 2018) method. Essentially, the1119

PDA method relies on numerous simulations of the model for a candidate set1120

of parameters to approximate the likelihood function through a kernel density1121

estimation procedure (KDE; Silverman, 1986). The PDA method assumes a1122

nonparametric form of the likelihood function whereas the kernel-based ABC1123

method is based on the normal approximation, and so PDA often will provide1124

a more accurate approximation of the likelihood function. As a downside,1125

the PDA method is usually time-consuming due to the high number of model1126

simulations often necessary for improving the likelihood approximation.1127

Another alternative for model fitting within the Bayesian framework is1128

to use Variational Bayes to compute the posterior distributions of model pa-1129

rameters (e.g., Ryali et al., 2011). The Variational Bayes approach is able1130

to obtain a posterior distribution of latent states and model parameters. In-1131

stead of relying on Monte Carlo property in MCMC sampling. To do so,1132

Variational Bayes assumes a parametric form of the posterior distribution1133
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and uses an iterative procedure to estimate the posteriors by minimizing1134

the distance between the posterior distribution and the evolving parametric1135

form (Galdo et al., 2019). Variational Bayes has been successful in fitting1136

many other MDS/DCM models (Daunizeau et al., 2014; David et al., 2006;1137

Friston et al., 2003; Marreiros et al., 2008; Ryali et al., 2011, 2016). How-1138

ever, Variational Bayes usually requires a known likelihood function, whereas1139

the likelihood in the current model is intractable. It is presently unclear1140

how Variational Bayesian methods will perform when optimizing over highly1141

stochastic gradients.1142

7.4. Limitations and future directions1143

7.4.1. Choice of features1144

Our example random dot motion task is based on a widely studied low-1145

level feature: motion direction. Numerous monkey and human studies have1146

shown the existence of separate neurons or voxels sensitive to each motion-1147

direction, and thus we believe it is entirely possible to identify R1 and R21148

from various fMRI voxels based on MVPA techniques. Other than motion1149

direction, many low-level physical features have investigated the encoding1150

properties (e.g. tuning curves) of voxels, such as line orientation, color, and1151

spatial location. However, we have not accumulated sufficient knowledge1152

about the properties of neural encoding for many higher-level or abstract1153

features. For example, it is not clear if voxels can specifically code for smaller-1154

sooner versus larger-later options in intertemporal choice, or for preferences1155

among food options.1156

Before knowing how higher-level feature values are encoded in individual1157

voxels, it is reasonable to remain conservative and apply this approach to1158

tasks that are based on low-level physical features. Note that limiting in-1159

vestigations to low-level features does not limit the scope of applying this1160

framework to low-level cognitive problems, because many higher-level cogni-1161

tive problems (e.g., memory, categorization) can be investigated with stimuli1162

using low-level features.1163

7.4.2. Number of parameters in the recovery study1164

In the parameter recovery study, we chose to recover only 5 of the 181165

parameters listed in Table 2. Therefore, we cannot guarantee that the whole1166

model structure is identifiable. It is expected that many more iterations1167

would be required to estimate the full model, and even then, we consider it1168

unlikely that all model parameters will be well recovered without significant1169
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amounts of data. The number of required iterations for convergence also de-1170

pends on which parameters are chosen to estimate, and the starting values of1171

chains for the estimation. More in-depth exploration is required to find the1172

effects of different numbers and different configurations of free parameters on1173

the computational costs of parameter estimation, as well as the particular1174

set of experimental and data constraints that will ensure parameter identifi-1175

ability.1176

7.4.3. Simulated fMRI design1177

For the assumed rapid event-related fMRI design in the simulation, we1178

used a constant inter-trial-interval (ITI) to reduce the complexity of model1179

simulation. However, a jittered ITI is more commonly adopted in real rapid1180

event-related designs as a way to minimize confounds from a subject’s ha-1181

bituation, as well as increasing the efficiency of estimating the hemodynamic1182

impulse response based on the periodic overlap among stimulus-related hemo-1183

dynamic functions (Birn et al., 2002; Liu et al., 2001). The model has to be1184

further refined so that the simulated fMRI data can be more comparable1185

with real fMRI data.1186

7.4.4. Modality of neural data modeling1187

We have mapped the neuronal activations to fMRI time series data via a1188

linear convolution with a canonical HRF, but under the temporal resolution1189

of fMRI, our framework may be better situated to model EEG time series1190

data. We simulated the time series of neuronal activations on the millisecond1191

level, but when mapping the neural activations to the fMRI BOLD signal, we1192

had to downsample the simulated fMRI BOLD signal by a factor of 1,000 to1193

mimic the real sampling resolution of typical fMRI signals. In so doing, we1194

have discarded significant information about the temporal dynamics of our1195

model. On the other hand, EEG data can easily achieve a temporal resolution1196

of 1 millisecond. In fact, DCM has been extended to generate EEG/MEG1197

data by use of a neural mass model to spatially map the unobserved neuronal1198

activations to the EEG/MEG evoked responses (David et al., 2006; Kiebel1199

et al., 2008). Another opportunity is to use anatomical sources from fMRI1200

to constrain source localization methods for EEG data. Such efforts could1201

exploit the temporal resolution of EEG and the spatial resolution of fMRI1202

to form a more complete picture of brain dynamics (Turner et al., 2016).1203

Although we are currently working on including EEG measurements in the1204
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generative model to take advantage of temporal information, such efforts1205

were beyond the initial scope of this article.1206

8. Conclusion1207

Our results suggest that the extended MDS framework may prove useful1208

for future efforts in developing fully integrated models of brain and behavior.1209

We have shown that integrated models can be used to produce patterns of1210

neural and behavioral data that resemble experimental results. We have also1211

shown that we can recover the model parameters when fit to simulated data,1212

where the true values of the model parameters are known. Together, these1213

results suggest that MDS may be productive in inferring causal links that1214

explain how behavior may emerge from the brain through mental operations.1215
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Consistency of regions of interest as nodes of fmri functional brain net-1378

works. Network Neuroscience 1 (3), 254–274.1379

Kragel, J. E., Morton, N. W., Polyn, S. M., 2015. Neural activity in the1380

medial temporal lobe reveals the fidelity of mental time travel. Journal of1381

Neuroscience 35 (7), 2914–2926.1382

Liu, T. T., Frank, L. R., Wong, E. C., Buxton, R. B., 2001. Detection power,1383

estimation efficiency, and predictability in event-related fmri. Neuroimage1384

13 (4), 759–773.1385

Lo, C.-C., Wang, X.-J., 2006. Cortico–basal ganglia circuit mechanism for a1386

decision threshold in reaction time tasks. Nature neuroscience 9 (7), 956.1387

Mandeville, J. B., Marota, J. J., Ayata, C., Zaharchuk, G., Moskowitz, M. A.,1388

Rosen, B. R., Weisskoff, R. M., 1999. Evidence of a cerebrovascular postar-1389

teriole windkessel with delayed compliance. Journal of Cerebral Blood Flow1390

& Metabolism 19 (6), 679–689.1391

Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A., Forstmann,1392

B. U., Oct 2011. Adjustments of response threshold during task switching:1393

a model-based functional magnetic resonance imaging study. J Neurosci1394

31 (41), 14688–92.1395

Marreiros, A. C., Kiebel, S. J., Friston, K. J., 2008. Dynamic causal modelling1396

for fmri: a two-state model. Neuroimage 39 (1), 269–278.1397

54



Maunsell, J. H., Van Essen, D. C., 1983. Functional properties of neurons in1398

middle temporal visual area of the macaque monkey. i. selectivity for stim-1399

ulus direction, speed, and orientation. Journal of neurophysiology 49 (5),1400

1127–1147.1401

McClelland, J. L., 1993. Toward a theory of information processing in graded,1402

random, interactive networks. In: Meyer, D. E., Kornblum, S. (Eds.),1403

Attention and performance XIV: Synergies in experimental psychology,1404

artificial intelligence and cognitive neuroscience. Cambridge, MA: MIT1405

Press, pp. 655–688.1406

Miletić, S., Turner, B. M., Forstmann, B. U., van Maanen, L., 2017. Pa-1407

rameter recovery for the leaky competing accumulator model. Journal of1408

Mathematical Psychology 76, 25–50.1409

Molloy, M. F., Galdo, M., Bahg, G., Liu, Q., Turner, B. M., 2019. What?s1410

in a response time?: On the importance of response time measures in1411

constraining models of context effects. Decision 6 (2), 171.1412

Niwa, M., Ditterich, J., 2008. Perceptual decisions between multiple direc-1413

tions of visual motion. Journal of Neuroscience 28 (17), 4435–4445.1414

Norman, K. A., Polyn, S. M., Detre, G. J., Haxby, J. V., 2006. Beyond mind-1415

reading: multi-voxel pattern analysis of fmri data. Trends in cognitive1416

sciences 10 (9), 424–430.1417

O’Reilly, R. C., 2006. Biologically based computational models of cortical1418

cognition. Science 314, 91–94.1419

Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., Turner,1420

B. M., 2018a. A tutorial on joint models of neural and behavioral measures1421

of cognition. Journal of Mathematical Psychology 84, 20–48.1422

Palestro, J. J., Sederberg, P. B., Osth, A. F., Van Zandt, T., Turner, B. M.,1423

2018b. Likelihood-free methods for cognitive science. Springer.1424

Penny, W., Ghahramani, Z., Friston, K., 2005. Bilinear dynamical systems.1425

Philosophical Transactions of the Royal Society B: Biological Sciences1426

360 (1457), 983–993.1427

55



Pirrone, A., Stafford, T., Marshall, J. A., 2014. When natural selection1428

should optimize speed-accuracy trade-offs. Frontiers in neuroscience 8, 73.1429

Polyn, S. M., Natu, V. S., Cohen, J. D., Norman, K. A., 2005. Category-1430

specific cortical activity precedes retrieval during memory search. Science1431

310 (5756), 1963–1966.1432

Purcell, B., Heitz, R., Cohen, J., Schall, J., Logan, G., Palmeri, T., 2010.1433

Neurally-constrained modeling of perceptual decision making. Psycholog-1434

ical Review 117, 1113–1143.1435

Ratcliff, R., Cherian, A., Segraves, M., 2003. A comparison of macaque be-1436

havior and superior colliculus neuronal activity to predictions from models1437

of simple two-choice decisions. Journal of Neurophysiology 90, 1392–1407.1438

Ratcliff, R., Hasegawa, Y. T., Hasegawa, Y. P., Smith, P. L., Segraves, M. A.,1439

2007. Dual diffusion model for single-cell recording data from the superior1440

colliculus in a brightness-discrimination task. Journal of Neurophysiology1441

97, 1756–1774.1442

Ratcliff, R., Rouder, J. N., 1998. Modeling response times for two-choice1443

decisions. Psychological Science 9, 347–356.1444

Ratcliff, R., Smith, P. L., 2004. A comparison of sequential sampling models1445

for two-choice reaction time. Psychological Review 111, 333–367.1446

Ratcliff, R., Voskuilen, C., Teodorescu, A., 2018. Modeling 2-alternative1447

forced-choice tasks: Accounting for both magnitude and difference effects.1448

Cognitive psychology 103, 1–22.1449

Redgrave, P., Prescott, T. J., Gurney, K. N., 1999. The basal ganglia: A1450

vertebrate solution to the selection problem? Neuroscience 89 (4), 1009–1451

1023.1452

Rigoux, L., Daunizeau, J., 2015. Dynamic causal modelling of brain–1453

behaviour relationships. Neuroimage 117, 202–221.1454

Roe, R. M., Busemeyer, J. R., Townsend, J. T., 2001. Multialternative de-1455

cision field theory: A dynamic connectionist model of decision making.1456

Psychological Review 108, 370–392.1457

56



Roitman, J., Shadlen, M., 2002. Response of neurons in the lateral intra-1458

parietal area during a combined visual discrimination reaction time task.1459

Journal of Neuroscience 22 (21), 9475–9489.1460

Ryali, S., Chen, T., Supekar, K., Tu, T., Kochalka, J., Cai, W., Menon,1461

V., 2016. Multivariate dynamical systems-based estimation of causal brain1462

interactions in fmri: Group-level validation using benchmark data, neu-1463

rophysiological models and human connectome project data. Journal of1464

neuroscience methods 268, 142–153.1465

Ryali, S., Supekar, K., Chen, T., Menon, V., 2011. Multivariate dynami-1466

cal systems models for estimating causal interactions in fmri. Neuroimage1467

54 (2), 807–823.1468
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Algorithm 1 Pseudocode for MDS model

1: I ← Number of trials
2: T ← Number of time points in a trial
3: Specify D,C1, C2, σ1, σ2, θ1, θ2, τ
4: for 1 ≤ i ≤ I do
5: Specify U ; Initialize S ← 0, t0 ← T, t1 ← T , choice ← null
6: if i > 1 then
7: Use the S(T ) of trial i− 1 as S(1) of current trial
8: end if
9: for 2 ≤ t ≤ T do

10: Q(t)← diag([σ1, σ1, σ1, σ1, σ1, σ1])
11: ω(t) ∼ N(0, Q(t))
12: S(t)← C1S(t− 1) +DU(t) + ω(t)
13: if | S3(t)− S4(t) |> θ1 then
14: Break current loop;
15: t0 ← t;
16: winner ← left if S3(t) > S4(t), right if S4(t) > S3(t)
17: end if
18: end for
19: if t0 < T then
20: for t0 + 1 ≤ t ≤ T do
21: Q(t)← diag([σ1, σ1, σ1, σ1, σ1, σ1])
22: ω(t) ∼ N(0, Q(t))
23: S(t)← C2S(t− 1) +DU(t) + ω(t)
24: if

∑t
n=1 S6(n) > θ2 then

25: Break current loop;
26: t1 ← t;
27: choice ← winner
28: end if
29: end for
30: end if
31: if t1 < T then
32: for t1 + 1 ≤ t ≤ T do
33: Q(t)← diag([σ2, σ2, σ1, σ1, σ1, σ1])
34: ω(t) ∼ N(0, Q(t))
35: S(t)← C1S(t− 1) + ω(t)
36: end for
37: end if
38: return S,RT ← t1 + τ , choice
39: end for
40: Concatenate S across trials
41: Perform convolution with HRF for each ROI
42: return fMRI BOLD activity
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